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Preface

I began this research with the goal in mind of creat-

ing a computer program that could be used tactically to

find the best evasive maneuver for a given satellite under

a given attack. I was able to make substantial progress,

and I believe that a tactically useful program is not too

far away.

One problem that took a good deal of time was the cal-

culation of the matrix the matrix of partial derivatives

of an orbital state vector at one time with respect to the

vector at an earlier time. The calculation is of no theo-

retical interest, but it is included in Section III in the

hopes that future students can be spared this painstaking

drudgery.

I owe the usual thanks for helpful assistance to my

faculty advisor, Lt Col Joseph W. Widhalm, along with

greater than usual thanks for the confidence he showed in

me and the freedom he gave me to develop the project in my

own way.

q Roger C. Burk
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Abstract

A threat to a satellite is modeled as a sphere of

given radius. The satellite may be required to be outside

of the sphere at a given time or never to enter the sphere

at all. The threat sphere may be inertially fixed or may

move in a keplerian orbit. A method is developed of

finding the smallest impulsive maneuver that can be made at

a given time to avoid the threat. Using the linearized:.'-

-. relationship between the satellite state vector at the

maneuver time and the state at the intercept time, itera-

tive algorithms are developed that converge on the optimal

evasive maneuver. A computer program that implements the
. 'C

algorithms is described. The results of the algorithms are

given for several cases. An interception taken from a

plausible real-world scenario is used as a basis for inves-

tigating how maneuver size varies with the geometry of the

interception.
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MINIMUM IMPULSE ORBITAL EVASIVE MANEUVERS

I. Introduction

Much research is being done on the astrodynamics of

orbital transfer and rendezvous, but there is nothing in

2-:• the recent open literature on the problem of avoiding an

interception in space. Until recently the problem has not

been of great practical interest. However, more and more

military capabilities are being put in satellites and the

*° means of intercepting them are improving. Some research

has been done on optimal interception (3). The problem of

avoiding an interception also needs attention. The

simplest way to defeat an interception is to maneuver the

"attacked satellite so that it does not come within the

lethal radius of the attacker. However, any orbital

maneuver will use up the satellite's limited supply of

propellant, perhaps shortening its useful life or leaving

it vulnerable to a second attack. All other things being

equal, the evasive maneuver should be as small as possible.

This thesis develops algorithms that can be used to calcu-

-• late the smallest impulsive maneuver that will evade a

given attempt at orbital interception.

"The mathematical method used was to find the linear

small-value approximation for the relationship between

changes in velocity at the time of maneuver and changes in

U).
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position and velocity at the time of interception. Analy-

sis of this relationship gave an approximate answer for the

optimal evasive maneuver, and successive iterations refined

the answer to the desired accuracy. Another approach ex-

plored was to express the maneuver as a function of the

orbital parameters of the evasive trajectory, starting with

the formulas in Section 7.4 of Kaplan (2:308-329). The

minimum of the function would then be found with standard

numerical analysis software. This second approach was

"eventually dropped in favor of the first. The writer was

more familiar with the iterative method, it was computa-

tionally simpler, and it seemed to offer greater flexi-

bility in changing the constraints of the problem.

This thesis contains all the mathematical analysis in

Section II, a description of the computer implementation of

the algorithms in Sections III and IV, and the results of

"" the computer program in Section V. In Section II, the

problem is described mathematically. An algorithm is then

developed that converges on an optimal maneuver that puts

the satellite at a given distance from the threat at a

given time. Then an additional constraint is imposed on

the problem: at the given time the approach rate of the

threat must vanish, so that the threat is never closer than

the given distance. Algorithms are developed for this

case, both with the time of closest approach fixed and with

it allowed to vary. Up to this point the threat was

- considered to be fixed in inertial space; the final step is

1-2



to consider a threat that is moving in an orbit of its own.

Modifying the algorithm to account for this completes the

mathematical analysis of the problem.

Once the analysis was complete, the next task was to

write a computer program to do the calculations. Section

III tells how this job was approached. A general descrip-

tion of the program is given and the astrodynamic model

used is described. Criteria are established for deter-

mining when convergence occurs. Since the algorithms can

guarantee only that a certain maneuver is locally optimal,

i.e. that it is better than any similar but slightly

different maneuver, a procedure for finding the globally

optimal maneuver had to be developed. This method is

presented, followed by the calculations used to assure that

the evasive trajectories in fact never come closer to the

threat than is desired.

Section IV describes certain limitations of the com-

puter program used and some numerical problems encountered.

The limits of the astrodynamic model are discussed. The

behavior of the program with very eccentric or hyperbolic

orbits and with very long spans of time is described. The

effect of the choice of coordinate axes is discussed and

some remarks are made on numerical singularities and

floating point overflows during computation. Finally, the

speed of convergence of the algorithms is examined in some

detail, for this was found to be a major problem. In most

cases the program converged quite promptly, but in certain

1-3
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intercept geometries, and whenever time between maneuver

and interception became short or the size of the orbit

became very large, convergence became extraordinarily slow.

How this problem was overcome is presented.

SThe program's results are introduced with a descrip-

tion of its inputs and outputs. The results from each of

the algorithms are presented for the case of a geosynchro-

nous equatorial satellite that makes an evasive maneuver

half an orbit before interception. The algorithms are

compared and the output validated. The results are pre-

sented for two other illustrative cases: maneuvering a

6 quarter of an orbit before a geosynchronous interception

and maneuvering two hours before a low-energy direct-

ascent interception. A realistic direct-ascent attack is

introduced for use as a standard of comparision. Finally,

a survey is presented of how required maneuver size varies

as a function of required miss distance, maneuver time, and

intercept geometry.

In Section VI, the results of the survey are summa-

rized. The thesis concludes with a discussion of the

tactics of orbital evasion and with some suggestions for

further work.

1
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II. Analytical Development

This section describes the analytical approach. The

mathematical model is presented first. Then an algorithm

is developed for the case in which the threat is inertially

fixed, the time of flight is fixed, and at the end of the

flight the satellite must be at a given distance from the

threat. Next, a second algorithm is developed incorpo-

rating the additional constraint that the trajectory be

tangent to a sphere around the threat. A third algorithm

0 allows an extra degree of freedom, in that the time of

-Jflight is allowed to vary, although the maneuver time is

still held fixed. The final development is to consider a

threat that is not fixed but is moving in its own keplerian

orbit. It turns out that the moving threat can be used in

any of the above three algorithms with little modification.

Mathematical Model of an Orbital Interception

The problem starts with a satellite in a keplerian

orbit. There is a threat to the satellite that can be

described as a location in space and a distance; the

distance might represent the lethal radius of a warhead or

the range of a target acquisition radar. At a given time

in the future the satellite will be within the sphere

defined by the threat's location and the required keep-out

distance. A maneuver time is specified. The problem is to

2-1



find the smallest maneuver that will result in the satel-

lite being outside the threat sphere at the given time.

This is illustrated in Figure 2.1(a): the threat is at

point A, and if the satellite does not maneuver it will

pierce the threat sphere at B and arrive at C at the time

of the threat. Two evasive trajectories are shown based on

impulsive maneuvers at D. One trajectory is slower and

arrives at E on the threat sphere at the intercept time;

the other is faster and passes through the sphere to 6 by

that time.

It can be proved by reductio ad absurdum that the

optimal trajectory ends exactly on the threat sphere. The

dynamics of the problem are those of classical two-body

motion, so the orbital state (i.e. the position and velo-

city) of the satellite at the intercept time is a continu-

ous and differentiable function of its state at the maneu-

ver time, although the functional relationship cannot be

written explicitly (1:191-203). Therefore infinitesimal

changes in the state--in particular, in velocity--at maneu-

ver time will produce infinitesimal changes in state--in

particular, in position--at intercept time. If a change in

velocity at maneuver time decreases continuously, the posi-

tion at intercept time will also change continously. If

the minimum impulse evasive trajectory did not end at the

surface of the threat sphere, it would be possible to de-

crease the size of the impulse until the trajectory ended

at the sphere, producing another evasive trajectory with an

2-2
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FigureangentEvasive Trajectories:
(a) To the Surface of the Threat Sphere

(b) Tangent to the Threat Sphere
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impulse smaller than the minimum. Thus, we need to find

the trajectory starting at the maneuver point and ending on

the surface of the threat sphere that can be obtained with

the smallest total change in velocity at the maneuver time.

Optimal Trajectory to the Threat Sphere

The method used was to develop an iterative algorithm

that used the results of one guess at the optimal trajec-

tory to produce a better guess. The line of approach in

the next three paragraphs is taken from Wiesel (4).

*Let the state vector of the satellite as a function of

time be expressed in inertial cartesian coordinates as

When no time is specified, w will refer to the state vector

at intercept time. Let the position of the threat be

Ck iX#4 yfh Z44 (2.1)
and let the required miss distance be S. We want to find

the optimal trajectory that at intercept time satisfies the

constraint

Let us define a function such that

2-4
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= - ,1"÷( - ,," - ,](2.,•)

(In an attempt to simplify the calculations, y was ini-

tially defined to be the square of the above expression,

but this was found to cause divergence when the initial

guess came very close to the threat.) Then the constraint

can be expressed as

(zif

* We can write the 1 x 6 matrix of partial derivatives off

with respect to the state as

Q, L1y Z~,a it

Infinitesimal changes in ? are related to infinitesimal

changes in • by

Sx -Z. 7)

Let the state vector at maneuver time be represented

Sby •, tr v. •. Since the final state is a continuous and

differentiable function of the initial state, infinitesimal

changes in the final state are related to infinitesimal

changes in the initial state by

2-5



where

-O*g 3 O)fX O

4__ dy -Y-

2 az -0) r z -

E x. 0• 2o •*. c•y. Oio
(2.9)

dx. Y. Olo 6x ;r e ýi i

'i . d 0 ~ Oxi Oh. 0i

However, we can only make changes in velocity at maneuver

time, so the left half of 4 is of no interest. Ift is the

6 x 3 matrix made up of the right three columns of !, then

Combining Eqs (2.7) and (2.10),

where E• is the 1 x 3 matrix that is the product of 2 and-.

Suppose that we have a trial trajectory that results

in a final state f. f is evaluated at trajectory end and

has the value ft. We would like to find a 4VX that will

2-6
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produce a change in of

4f will not be infinitesimal, but using the linear approxi-

mation and assuming reasonably small values,

E Av. .)

Ar is known and the components of E can be calculated; the

components of A are to be found. This is one equation

with three unknowns, so it is underdetermined.

There will be an infinite number of components for AX.

that will satisfy the equation. However, we want the set

that will provide the smallest IAV-. Thus the problem

becomes one of constrained minimization: we need to mini-

mize

I'dV.)L = Ac + L'0., Ai-O L2.~

subject to the constraint

-1% E. 6 + E2 y tE 3 .A ~.

where the Ez are the elements of E. Since this gives an

answer only for the linear approximation, the procedure has

to be applied iteratively to converge on the exact solu-

tion. The Av# determined at each step is applied to X& to

produce a new trial trajectory. However, the optimization

part of each step has as its goal minimizing not the 4V'

for that step, but rather the overall tv. relative to the

2-7



original trajectory. If AZV. is the overall trajectory

change at the end of the previous iteration, and 6 V- is the

change to be found in a given step, the quantity to be

minimized is (dropping the subscript for brevity)

Since AX is a constant from the previous iteration, this is

the same as minimizing

We can use the constraint (Eq E2.15]) to eliminate one

*variable from the objective function •. If we eliminate

:., then

W6 +/Sti1 +A+ l7Jc 6y + 4 + 2-1

where

E,"L

Ea (2.220)

E3 E

3,E3

2-8



Note that the objective function is quadratic and has

strictly postive coefficients on SL and . The cross

term could be negative, but it would dominate the function

only when both and were large in magnitude, and

then

+ _ + 2,___

+ E, E_

4 - )

z11+ c•" "fa)t]" o 2.5

making O large and positive. Therefore the function repre-

sents a sheet in the So-S 7 plane concave upwards, and it

has a unique minimum.

An extremum will occur when

"- " and

21 S (-2

With two linear equations and two unknowns, we can solve

for Sx and 6:

2-9
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can then be obtained from Eq (2.15), and 6V. is entirely

determined. It can then be applied to 9#o to produce a

new trial trajectory, which should have a smaller value for

Af at the intercept.

Note that we could chance upon a trial trajectory that

produced a zero value forf but still was not optimal. It

is necessary to continue to iterate until SV. goes to zero

as well as Zf. This will guarantee that there are no

nearby trajectories that also give the desired final condi-

tions but at a smaller maneuver cost.

Optimal Trajectory Tangent to the Threat Sphere

The trajectory produced by the above algorithm will

put the satellite at the surface of the threat sphere at

the time of interception, but the trajectory is very likely

to pass through the sphere either before or after that

moment (Figure 2.l1a]). This may be acceptable if the

threat is known to be an instantaneous one, such as a

high-velocity interceptor that will cross the satellite's

"orbit at a known time. In other cases, it may be desirable

that the satellite never enter the threat sphere at all.

In such a situation we need the optimal trajectory that

2-10
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Figure 2.2. Tangent Trajectories to Concentric Spheres

touches the threat sphere but does not pierce it. This is

shown in Figure 2.1(b), where the evasion trajectories DH

and DI are tangent to the sphere on nearly opposite sides.

If the trajectory must never enter the threat sphere,

it is not as simple to prove rigorously that the optimal

trajectory touches the sphere as it was when the orbit

could pierce the sphere. However, a practical proof is

still possible. In Figure 2.2, suppose that AB is the

optimal evasion trajectory for threat sphere C, which it

does not touch. A larger sphere D is tangent to AB. AB

must be the optimal evasion trajectory for D, since any

better trajectory would also be an evasive trajectory for

C. If AE is the best possible trajectory tangent to C,

then AE by supposition must be less optimal (i.e. require a

2-11
I!
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larger impulse at A) than AB. Therefore the best trajec-

tory tangent to the larger sphere requires a smaller im-

pulse than the best trajectory tangent to the smaller

sphere. This is contrary to the results in Section V

"(Figure 5.5): it was found that the impulse for the best

tangent trajectory grew linearly with sphere radius.

Therefore the optimal evasive trajectory should be tangent

to the threat sphere.

To find this trajectory, an additional constraint must

be imposed on the state vector at intercept time.

Let us define a function f such that

VV

Then the constraint that the satellite's velocity be

tangent to the threat sphere is expressed as

0 (2.3/)

at the intercept time. With this additional constraint

imposed, it is necessary to redefine D as

21
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yY-'. 2-24 0 0 0

J-

(analogous to Eq 12.6J). Then

[D I D 6v. ~E (2.v3

where f is here a 2 x 3 matrix.

Given a trial trajectory, we can calculate and at

intercept time. A, the desired change in 9 ,is still given

by Eq (2.12), and

In the linear approximation.

The o217,bjetivew fntion o ise strialls casivn bylmiaeEq (2.17), but now two of the variables can be eliminated

because we have two constraints in Eq (2.35). If and

$2 are eliminated, then

where

2-13
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• - (2.3?)

E,149 -Ea'-2
A - , Fax- Ez31 E,3w

el - 5 EA- E2,146 (2.qO)

4 " - '&3 * ,.,. 2,Ai 2.,,3)

and the E••are the elements of g (• through have been

redefined from their use in Eqs [2. 19] through [2.24]).

Note that 0' is again quadratic with a strictly positive

second-order coefficient, so it has a unique minimum.

Setting its derivative equal to zero,

.m•"The other components of Si,' are

2-1
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Allowing Time of Flight to Vary

The above algorithm restricts the time of flight

between the maneuver and the tangency point: it must be

the same as the original time between the maneuver point

and the interception. This is probably not a realistic

restriction. If anything, it would be advantageous for the

time of closest approach to be different from the expected

intercept time. The next step in the analysis is to

include time of flight as a variable. The maneuver time

will be held fixed, but the time when the satellite is at

the tangency point will change.

* Time of flight can be considered as a another variable

- besides 6o that determines a new X. Eq (2.10) must be

rewritten as

where has been augmented to a 6 x 4 matrix, the rightmost

column of which relates infinitesimal changes in time to

infinitesimal changes in final state. In other words, this

column contains the partial derivatives of the state with

respect to time, which are just the velocity and accelera-

tion of the satellite. The velocity is part of the state

vector and the acceleration is the acceleration of gravity,

so the last column of is

.1



where• is the gravitational parameter of the Earth.

Eq (2.33) still holds, butf is now a 2 x 4 matrix.

The objective function is still as in Eq (2.17), but the

constraints are represented by

a system of two equations with four unknowns. Note that

one of the unknowns, St, does not occur in the objective

function. One of the constraint equations must be used to

eliminate S from the other, which then can be used to

eliminate one variable from 6. If this is done, we obtain

where here the coefficients are defined by the following:

-3E,-E - EAE, C

A Eot&L -Fi OFS Uri2)/-Ea ,t C, - Ept FL.

4 -(2.5)

~: I+g
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.2 (2.54)
S= 7"/3(]- 13. 7" ] Lz.•U)

Again Chas a unique minimum, and

,•. -2t; 2.o

21e6) - ~ ~ 12 •.,

6i 2

EIt6,t (6-•{ ~ - E~,,6, -EI• (zE••)x3)

Note that it has been assumed that the tangency con-

straint has been imposed. If it is not, the avoidance

problem becomes trivial when time of flight is allowed to

vary. By choosing the trajectory end time as the moment

when the satellite enters the threat sphere, the only

constraint (on radial distance) is satisfied without any

maneuver at all.

Only the end time of the trajectory was allowed to

vary, but the maneuver time can also be made a variable.

This approach was not explored because of an expectation

that it would always be better to maneuver earlier. As

will be discussed in Section V, this turned out to be

generally but not quite universally true.

2-17
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The Moving Attacker

Up to this point the threat has been considered as

fixed in inertial space. In a real attack, the interceptor

would be a missile or satellite moving in an orbit of its

own. If the interceptor carried a homing device of a

certain range or an explosive warhead whose time of deto-

nation was unknown, the evasive trajectory would be

required never to take the satellite closer than a fixed

distance to the moving threat. We want the minimum impulse

trajectory such that at the time of closest approach to the

threat, the distance between the two spacecraft is equal to

0 the required keep-out range. The satellite's trajectory

must now be tangent to the threat sphere not in the

.geocentric frame of reference but rather in the moving

frame of reference of the sphere itself. Thus, if the

state vector of the attacker at intercept time is K#J, we

must consider the state vector of the satellite with

respect to the threat:

We have used the error functions ? and 4 (defined by

Eqs [2.43 and C2.30]) to represent the constraints on the

trajectory. The distance constraint is not affected by the

motion of the attacker, so the f constraint is unchanged.

The constraint must be rewritten as
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D should now be calculated as the the matrix of partials of

the error functions with respect to the relative state:

X-4 y-yA Y41% 0 0 0
1' 9 9

O = (z.6•)

where the only difference from Eq (2.32) is the subtraction

of threat velocity from the first three terms of the second

row. Likewise, should now be considered the matrix of

partials of the relative state with respect to the indepen-

dent variables v and . Since the absolute state of the

threat is independent of the left three columns of

are the same as before. However, the state of the threat

does change with time, so the elements of the rightmost

column of • become

" u.
-r r. rl 41i 01 rA

(compare with Eq (2.48]).

With D and ! redefined in this way, any of the three

algorithms already described can be used to calculate opti-
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mal corrections to V, and converge on the best evasive

trajectory. Of course, in the first algorithm, in which

the time of flight is fixed and no tangency constraint is

imposed, there is no point to using this modification,

since the motion of the threat is irrelevant to the

problem.
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III. Computer Implementation

This section describes how the mathematical algorithms

were translated into a working computer program. After a

general description of the program, the method of gener-

ating the matrix is presented. The criteria used to

establish convergence are described and the method of

dealing with multiple solutions are given. The final

subsection shows how it was proven that the time of closest

approach found by the algorithms imposing the tangency

constraint was in fact the global closest approach to the

threat.

General Description

The program was written in FORTRAN 77 and run on the

VAX 11/785 Scientific Support Computer (SSC) under the UNIX

operating system at the School of Engineering of the Air

Force Institute of Technology. The program contains about

1900 lines of code in 22 separately compiled subroutines.

The program generally conforms to good programming practice

but does not have extensive comments. Orbit calculations

are all done in double precision using the universal

variable formulation found in Bate, Mueller, and White

(1:191-210). The program takes the satellite and threat

state vectors from an input file, along with the maneuver

and intercept times and the keep-out distance. If the
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* threat velocity vector is null, the threat is treated as

inertially fixed. The same program runs all three algo-

rithms. The orbital calculations are the same for all

three, and logical input variables control which set of

equations is used to calculate g. Another input variable

causes the printing of intermediate results for debugging

and verification. Some checks are done on the reasona-

bility of the input. The limits of convergence and the

maximum number of iterations were coded into the program

and were the same for each run, but they can be changed in

the code fairly easily. In general the program contains

little protection against numerical problems and singu-

i ., larities--such protection was put in only when a problem

occurred.

Generating the Phi Matrix

The matrix • is the 6 x 6 matrix of the partial deriv-

atives of components of the end state with respect to com-

ponents of the beginning state, as shown in Eq (2.9). The

algorithms require that the right three columns off be

calculated for each trial trajectory, since they form the

left three columns of T. The matrix P can be derived in

several ways, including integrating the equations of varia-

tion along the trajectory (4). In the two-body problem it

can be calculated exactly, and this is what was done. The

method used was to express the end state in terms of the

and 9 functions described in Bate, Mueller, and White

3-2
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(1:198), and then differentiate it with liberal use of the

chain rule.

The end state can be written as

V ýC' j VO(3.2)

(1:198). With some notation conventions, f can be com-

pactly represented in terms of its four 3 x 3 submatrices.

Let us take a partial with respect to a vector to mean the

vector of partials with respect to the vector elements, so

that

(33

and so on. Also, for any two vectors a. and b, let their

vector matrix product be defined by

L. % Jn lt r n te idenit m x T

S~and let I represent the identity matrix. Then
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-- (3.6)

Idr.

'4.• (3.?)

AAS

:r•.

•\ tory end, t is the time elapsed on the trajectory, •su is the

:""-',.,:Earth's gravitational parameter, 4. is the semimajor axis of

VJ

•Thet and the otvhe variablescanbehnnoc byi

Sexp~~lacted bu cnfromud ro

9-. - . . . .%. - - -- - (3.13 - ,•%/ .",

" . .. ,

(1nd0the0universa vriabl the whgichd cnofthbe goiiven

elictly bufcnbeoonmfo

.4.'-
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(1:195-196). ,% and 4£ are written in script to

"distinguish them from the x- and z-coordinates.

The differentiation can begin by evaluating the

following:

Re•.• r r ,- 03 1%-- £ -e~

VO a.0 0 i6~ 3.~

dx. V" ve V&

where

Using Eq (3.17) one finds that

U- CL

"In addition,

SC - - C S.). (3.2)
: dI- 2.- -5
Vl 3-5 •.•
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b'� -C - 35

(1:210). Using these, one can perform the differentiation

of and to to find that

V. A40CJ

434

2,V

.~~~2 C - Ra''

where everything is known except

6 Before finding the partial derivatives of f and 9, it

is convenient to evaluate the following:

-. N+ ( rO9 + ,-. .v 4 0

where

Then
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1

A.ki CL R , + -avis " 6• ) ww R

z~ ~ ~ +45%QR

-Ia-1 R3 + Rj (32)

Again everything is known except #X, which is now the only

* element needed to find

This final partial can be evaluated from Eq (3.14).

"Time is held constant, since we are interested in how the

universal variable 4 changes when small changes are made in

the initial state without changing the time of flight. The

result is

___- , [-s~~..r. ~zs] • a otI"-~) '-

When converging on an optimum orbit, • hardly changes

at all after the first couple of iterations (4). Computer

run time could probably be reduced somewhat by not recalcu-

lating the matrix at every step. On the other hand, the

burden of calculating it is not excessive, since most of
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the values needed are available as by-products of finding

the end state. The program as written recalculatesf at

every iteration.

Convergence Criteria

In an iterative algorithm, criteria must be selected

for deciding when one is close enough to the exact answer

to stop calculating. For this program, a miss distance

accuracy of 10 meters was selected as at or beyond the

limit of practical orbital determination and as negligibly

small compared to the threat sphere radii used (hundreds of

kilometers). A closing rate accuracy of 0.1 meters per

second was selected as being zero for all practical pur-

poses. The values used to determine convergence in the

program were based on these numbers.

Different criteria were established for A, 6, St,

and 5V.. Since the error function y is the required miss

distance, Ad was considered converged when its magnitude

became less than 10 meters. Since ý is the dot product of

the relative position and velocity vectors, the closing

velocity at the threat sphere is given by -f/c, where d is

the sphere radius. Therefore the convergence limit for 6

was •#• meters per second. The convergence criterion for

6t was set at 0.0009 seconds so that even at the highest

possible elliptical orbit velocities the final position

would be accurate within 10 meters. These were all values

defined at the end of the trajectory and their limits were

'8
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straightforward; the problem of convergence limits on 8V

was somewhat subtler. In the infinitesimal limit, changes

in initial velocity are related to changes in final posi-

tion by the upper right 3 x 3 submatrix of •. The highest

values observed there were on the order of 100,000. This

required that the maneuver velocity be accurate within

0.0001 meters per second, which was the limit initially

used. In any iterative procedure, however, iterations can

be stopped after corrections have become smaller than the

ultimate desired accuracy only when convergence is rapid

enough that most of the remaining distance to the true

0 solution is covered at each step. If the corrections at

each step are only slightly smaller than the previous ones,

then the procedure can be converging and the individual

corrections can be negligibly small when there is still a

significant distance to go to the true answer. As will be

described in the Section IV, this problem was encountered

and required even stricter limits on velocity corrections.

Finding Multiple Solutions

The convergence of the algorithm on a particular solu-

tion proves only that that solution is locally optimal, not

that it is the best of all possible maneuvers. Also, there

is no guarantee that the algorithm will converge from any

particular starting guess. To ensure finding all the

locally optimal solutions, the algorithm was run nine times

for each problem with nine different initial guesses. The
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first initial guess was the original orbit; the other eight

were positive and negative changes in each of the four

decision variables (velocity and time) large enough to move

the end position by a distance equal to the threat radius.

It was found that usually at least seven of the nine

converged, and that there were almost always exactly two

locally optimal solutions. The only exceptions were when

the original interception came no closer to the target than

about one third of the threat radius; in these cases only

one solution was found. Whenever this happened, the pro-

gram searched for a second optimal solution using another

twelve initial guesses, which varied the decision variables

in pairs. No second solution was ever found from the extra

twelve runs except when for some reason most of the initial

nine attempts had not converged. No third solution was

ever found, although nine attempts were always made. The

writer conjectures that two locally optimal solutions are

the largest number that ever occur.

Ruling Out a Second Close Approach

Since the algorithm examines the evasive trajectories

only at the maneuver time and at the time of closest ap-

proach (TCA), one cannot a Eriori rule out the possibility

that there is another closer approach either before or

after the TCA. To eliminate this possibility, the relative

position of the satellite was calculated ten seconds before

and after the TCA for each locally optimal solution. If
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the satellite was still outside the threat sphere, a subse-

quent time (or a previous time, for the check before TCA)

was calculated at which to evaluate the satellite's rela-

tive position again. This subsequent time was the time at

which the satellite would be at the surface of the threat

sphere if an acceleration equal to the surface gravita-

tional acceleration of the Earth were constantly acting

along the line joining the satellite and the threat. This

acceleration was chosen on the grounds that it would always

be greater than the actual net acceleration between the

spacecraft. The relative state at the subsequent time was

*. used to calculate the time of a further check in the same

way. The process was repeated both forward and backward in

time until the time from TCA was greater than 4000 seconds

(about 67 minutes). No second close approach was ever

-found.
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IV. Limitations and Numerical Problems

In this section the deficiencies of the algorithm and

of its computer implementation are discussed. Certain lim-

itations are described: the accuracy of the astrodynamic

model and the handling of very eccentric orbits and very

early maneuver times. Then some problems are described

that were encountered concerning the choice of coordinate

axes, numerical singularities, and exponent overflows

during computing. The last subsection covers the most

*- difficult problem, that of slow convergence.

Astrodynamic Model

Simple two-body orbital dynamics was used without

including any perturbations or the surface of the Earth.

This was done only for ease of computation; the algorithms

do not assume any particular model. Since the orbital

trajectories in an avoidance problem are usually less than

a complete orbit, the difference between real motion and

two-body motion should be negligible in most cases. Prob-

ably the model used would be practical for all satellites

except those at very low altitude and those near or beyond

o the moon; however, this question was not investigated.

Extreme Orbits

Also for ease of computation, certain types of orbits
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were excluded from consideration. The major restriction on

the satellite orbit was that it not be hyperbolic: the

procedure used to calculate 0 involved taking the square

root of the semimajor axis. However, this is not essential

to the method used, since aZ can be eliminated from the

derivation by replacing Eq (3.9) with

if

(1.202) and Eq (3.14) with

S + L MIIL2C *ri-)

(1.196) and using

a,ý S ?',/) = 'X - ýS) 3

The algorithms were considered to have diverged when a

trial trajectory was hyperbolic, so hyperbolic evasive

trajectories could not have been found even if they were

optimal. However, since two elliptical trajectories were

always found even when the evasive maneuvers were large, it

does not seem likely that any optimal hyperbolic trajec-

tories existed in the problems run. The interceptor was

allowed to be in a hyperbolic orbit; the only restriction

was that its velocity be less than 200 kilometers per

second.
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Very Early Maneuvers and Multiple Revolutions

Because the orbit prediction algorithm as coded did

not do well over long time spans, an upper limit of 86,160

seconds (about one sidereal day) was imposed on the time

between maneuver and interception. This is probably much

longer than the interval that would occur in any real

situation. When the interval was smaller than this but

still several times the orbital period of the attacker,

another mathematical problem caused convergence to become

erratic. Sometimes the optimization algorithm would

produce a t value comparable to the attacker's period.

Then the program might iterate randomly, moving the evasive

trajectory to various places around the attacker's orbit

without getting back to the vicinity of the interception.

It might also converge to an optimal closest approach on a

revolution different from that of the attack. This could

be easily recognized by the large difference between TCA

and input intercept time. In any case, these problems were

not considered to be of practical importance because an

evasive maneuver probably would not be performed when the

attacker was still several revolutions away.

Choice of Coordinate Axes

The program uses geocentric inertial cartesian coordi-

nates for input, processing, and output. It was observed

during program verification that when all input vectors

were in the x-y plane, many elements of j went to zero and
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it became mathematically impossible for the algorithm to

produce any 9. out of that plane. There was also a suspi-

cion that numerical problems might arise when one or two

coordinates of a vector got very close to zero. For these

reasons, a subroutine was created to perform a coordinate

transformation putting the intercept point in the middle of

the first octant. The inverse transformation is done on

the output, which is given in input coordinates.

Singularities and Overflows

If any of the 2 x 2 submatrices of the matrix f (de-

* fined in Eq [2.33]) are singular, then certain intermediate

results in the algorithms become undefined (i.e. Eqs (2.37]

through E2.40] and E2.51] through [2.53]). No protection

against this was put into the program and the problem never

occurred; it would have caused the program to abort. On

one occasion the denominator of Eq (2.60) became zero; the

algorithm was modified to set 6k equal to zero for any

iteration on which this occurs. Another time the program

aborted because of an exponent overflow while evaluating

the numerator of the same equation, even though the value

of .* was not unusually large or small. This problem was

avoided by scaling down all the values used in the calcula-

tion. Program aborts besides these are probably possible,

but none was encountered.

4-4



Speed of Convergence
4.•

It was found under most circumstances that all three

algorithms converged quite quickly, usually in 5 to 15

iterations. The entire computer program would run from

beginning to end, iterating to convergence from 9 initial

guesses, in only a minute or so of wall clock time. How-

ever, three circumstances were found in which convergence

became much slower. The first circumstance was the satel-

lite at intercept time heading almost directly towards the

Earth; the second was the satellite being in a very high

circular orbit. The third was the interval between the

maneuver and the intercept (which will be called the maneu-

ver interval) being less than 10,000 seconds, or about 2

hours 47 minutes--this circumstance was of particular con-

cern because it is short intervals that would probably be

used in a real attempt at evasion. Fifty or more itera-

tions were sometimes required in these cases, and it took

the program tens of minutes to run. In extreme cases, the

program limit of 100 iterations would be performed without

convergence. Figure 4.1 shows how the number of iterations

increased as maneuver interval went down. It is not under-

"stood why these circumstances should cause slow conver-

. gence.

In examining the behavior of the third algorithm (tan-

gent trajectory, varying time) with a short maneuver inter-

4 val, it was found that the and 4 functions (representing

the distance and tangency constraints) and the time of flight
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Figure 4.1. Iterations vs. Maneuver Interval

variable S were brought within their convergence limits

fairly quickly, usually within 10 iterations. The compo-

nents of Sv,, on the other hand, converged much more

slowly, and all at the same rate. The correction for each

component was smaller at every iteration, but only by 10%

to 40%, and it was always of the same sign. Furthermore,

the trajectory end positions occupied successive points for

*• approximately 5 degrees around a great circle of the threat

sphere normal to the relative velocity vector. The situa-

tion is illustrated in Figure 5.2, in which trajectory AB

represents the best path after the tenth iteration; it is

tangent at B and has there the relative velocity vector

-¶## Thirty iterations later, the tangency point is C and
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Figure 4.2. Locus of Trajectory End Points

the relative velocity vector is ,j. All the tangency

points in between have been on arc BC of circle BCD, which

is a great circle of the threat sphere centered at E. The

conclusion of this was that although the algorithm works

well in finding the great circle on which the optimal point

of tangency lies, it is inefficient in moving around the

circle to that point.

An attempt was made to improve convergence by reducing

the degrees of freedom of the problem. Once the great

circle was located, a different algorithm was used that

allowed only points on the circle to be selected. The al-

gorithm was otherwise similar to the alyorithms in Section

II. When this algorithm converged, its answer was turned

over to the original procedure for final optimization.
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This scheme performed somewhat worse than the original

algorithm by itself.

The next approach involved multiplying the 6VV correc-

tions by an arbitrary constant to speed convergence. This

approach was more successful. The constant was accepted by

the program as part of the input. If three iterations in a

row produced less than a 50% reduction in the magnitude of

b., the corrections on the last iteration were multiplied

by the constant. If convergence was still slow after five

more iterations, the factor was applied again; this proce-

dure gave better results than using the factor on every

iteration. By trial and error a factor could be found for

every situation than produced convergence in 15 to 20 iter-

ations. When the maneuver interval was very short the best

factor was in the hundreds; Figure 4.3 shows how the best

convergence factor increased as maneuver interval de-

creased.

As mentioned in Section III, the slow convergence of

the algorithm had an effect on the selection of convergence

criteria. It was found that when convergence was slow,

different initial guesses converged on answers that were

different only in their least significant figure. The

convergence criterion for SV0 was made more stringent by a

factor of 10, and the two answers merged into one. Some

particularly slow problems still reported convergence on

not quite identical answers, so for them the limit was

reduced by another factor of 10. Even then, the smallest

4-8

s



0

W 0U 0

o
3W U

0

w *4

W

z
0
U 0

2 3 4 5 7

MANEUVER INTERVAL (SECONDS X 1000)
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maneuver interval attempted (8 minutes 20; seconds) still

resulted in multiple listings of the same essential answer.
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V. Results

To add concreteness to what has been said about the

program's input and output, this section begins with a

description of the formats used. Then several evasion

problems of special interest are examined. The first four

feature maneuvers twelve hours before a geosynchronous

interception; these cases are valuable both as examples and

as aids in program validation. Maneuvers six hours before

the intercept are then examined, followed by a maneuver to

* avoid a minimum energy interception. A problem taken from

a realistic scenario is described in detail and then used

as a standard of comparison. The section closes with an

analysis of how maneuver size changed as each parameter of

the standard interception was independently varied.

Sample Input and Output

"Figure 5.1 shows the program's input in the format in

which it lists it. First the satellite's state vector is

given; the epoch time of the vector is in seconds from an

arbitrary reference and can be any time within a day of the

maneuver and the intercept. It was usually convenient to

take the intercept time as the reference, as in the figure.

The state vector of the threat follows; if the velocity is

null the threat is treated as fixed. The next item is the

threat sphere radius, followed by the intercept time in
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.•,• seconds from the reference. This time is the trajectory

end time if time of flight is fixed and is used as an

initial guess at time of closest approach if time of flight

is free. The maneuver time is given next; this time is

always fixed. The next input variable is an integer that

governs the printing of intermediate results. The follow-

ing two items are logical variables that control whether

time of flight is fixed or allowed to vary and whether or

not the evasion trajectory must be tangent to the threat

sphere; together these variables govern which of the three

algorithms is used. The final input item is the factor

* that will be used to increase every fifth iteration's

corrections if convergence is slow.

Figure 5.2 shows how the program presents its output.

For each of the locally optimal solutions, first the total

magnitude of the required maneuver and the trajectory end

time are given. This time will be in seconds from the same

reference time that was used in the input. It will be the

time of closest approach if time is allowed to vary and the

same as the input intercept time otherwise. Following

this, the cartesian components of the evasive maneuver are

given. The last six lines contain three state vectors at

trajectory end time, all in kilometers and kilometers per

second. The first two are the inertial geocentric states
V* of the satellite and of the threat; the third is the iner-

,' tial state of the satellite relative to the threat. The

globally optimal solution is selected manually by comparing
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Figure 5.3. 12-hour Geosynchronous Maneuver

the sizes of the two maneuvers.

Maneuvers 12 Hours before a Geosynchronous Interception

"An intercept situation with a fixed threat was run

with each of the three algorithms, then the threat was

given motion and a fourth run was made. The results

illustrate how the required maneuver changes with the

various constraints. They also validate the proper opera-

* tion of the algorithms. The situation used is shown in

Figure 5.3 and was that of the input in Figure 5.1: geosyn-

chronous orbit in the x-y plane, 500-kilometer threat where

P.r the orbit crosses the x-axis, and maneuver performed half

an orbit away. At maneuver time the satellite is on the

"negative x-axis and moving in the negative y direction; at

the intercept it is on the positive x-axis and moving in
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Table 5.1. No Tangency, Fixed Time, Fixed Threat

Solution 1 Solution 2

Impulse Magnitude (m/sec) 3.343 3.351
x-component 1.149 -1.158
y-component 3.140 -3.145

"Final Relative Position (km)
x-component -174.2 170.5
y-component 468.7 -470.0

the positive y direction.

No Tangency, Fixed Time, Fixed Threat. The first run

looked for a trajectory ending anywhere on the surface of a

fixed threat sphere at a fixed time. The two solutions are

given in Table 5.1 (z-components were all zero and are

omitted). Solution 1, which is slightly optimal, is mostly

retrograde and results in a trajectory that flies through

the threat sphere before the intercept time. Solution 2 is

mostly prograde and flies through the threat sphere after

the intercept time. Note that the two solutions use nearly

opposite maneuvers and end at nearly opposite sides of the

"threat sphere.

Tangency, Fixed Time, Fixed Threat. The next run used

the same input, except that one logical input was changed

to impose the tangency constraint. The results are in

Table 5.2. The tangency constraint is very expensive: the

maneuvers required here are seven times larger than those

of the previous case. The two solutions are still very

similar in magnitude and nearly opposite in direction. The

two tangency points are also still on nearly opposite sides
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Table 5.2. Tangency, Fixed Time, Fixed Threat

Solution 1 Solution 2

Impulse Magnitude (m/sec) 23.459 23.204
x-component -21.587 21.367
y-component 9.184 -9.049

Final Relative Position (km)
x-component -500.0 500.0
y-component -3.4 -3.6

Table 5.3. Tangency, Varying Time, Fixed Threat

Solution I Solution 2

Impulse Magnitude (m/sec) 9.184 9.048
x-component 0. 0.
y-component 9.184 -9.048

Final Relative Position (km)
x-component -500.0 500.0
y-component 0. 0.

Time of Closest Approach -382.6 383.7

of the threat sphere. They are almost on the x-axis, one

being on the earthward side (inside) and one on the far

side (outside). Solution 2, which passes on the far side,

is optimal.

Tangency, Varying Time, Fixed Threat. The results of

allowing time of flight to vary are shown in Table 5.3. It

was expected that the extra degree of freedom in time would

result in smaller maneuvers, and they were smaller by about

60%. It was also expected that the two optimal trajecto-

"ries would be ellipses aligned along the x-axis. As shown

in Figure 5.4, the maneuver point A would then be the apo-

"gee of the inner trajectory and the perigee of the outer

trajectory. The tangency points would be at perigee B and

at apogee C, respectively. As can be seen in the table,
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Figure 5.4. Tangent Ellipses with Varying Flight Times

this was the result. This case was important in validating

i the program, since the maneuver sizes could easily be

checked manually. Note that here the maneuvers and the end

Spositions have become exactly opposite. Solution 2 flies

on the outside of the threat and is optimal; since the

larger ellipse has the longer ti-- of flight, the closest

t approach for this solution occurs after the nominal inter-

S~cept time. (In all the runs that were made, it was usually
fon ob h case that one of the two solutions passed

on the inside and the other on the outside of the threat,

S~5-8
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Table 5.4. Tangency, Varying Time, Moving Threat

Solution 1 Solution 2

Impulse Magnitude (m/sec) 40.564 7.128
x-component 32.014 -0.924
y-component 24.910 -7.068

Final Relative Position (km)
x-component 467.9 495.5
y-component 176.2 -67.2

Time of Closest Approach -6897.3 1614.3

and that the outside trajectory was optimal.)

Tangency, Varying Time, Moving Threat. In the last of

this set of runs, the threat was put in a coplanar ellipti-

cal orbit and was at apogee at the expected intercept.

SThis is the case shown in Figure 5.1 and Figure 5.2; the

results are condensed in Table 5.4 for comparison. It was

expected that the motion of the target would create oppor-

tunities for more optimal trajectories than were found with

the fixed threat. Solution I turned out to be over four

times worse, but Solution 2 showed an improvement. This was

a case in which the two locally optimal solutions were

quite different. Solution 1 has a large radial component

and passes the threat almost two hours before the intercept

time. Solution 2 is mostly prograde and results in a

higher, slower orbit that passes the threat about 27

"minutes after the latter's perigee. Note that the optimal

maneuver here is only a little more than twice as large as

the optimal maneuver in the first case, in which the threat

and the time of flight were fixed but the tangency

constraint was not imposed.
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4Table 5.5. 6 Hour Interval, Fixed Threat

Solution 1 Solution 2

Impulse Magnitude (m/sec) 16.222 16.393
x-componbnrt 14.478 -14.693
y-component -7.313 7.269

Final Relative Position (kin)
x-component 500.0 -500.0
y-component -4.8 -4.7

Time of Closest Approach 110.2 -112.5

Maneuvers 6 Hours before a Geosynchronous Interception

A series of runs was made similar to those of the pre-

vious subsection but with the maneuver only a quarter of an

orbit before the intercept. The last two of these were of

some interest. The results of running the problem with

the tangency constraint imposed and time allowed to vary

but with the threat fixed are shown in Table 5.5, which

should be compared with Table 5.3. The time until inter-

cept has been halved and the maneuver size has increased by

about 80O%. The maneuver and the evasion ellipse are no

longer aligned with the axes. A prograde maneuver of 16.18

meters per second would have created a perigee on the y-

axis and been very nearly tangent to the threat sphere on

the outside; the program found two better trajectories with

rotated major axes.

The results with a moving threat are shown in Table

. 5.6. The threat here had the same orbit as that used for

Table 5.4. Note that again the moving threat caused the

two locally optimal solutions to move further apart and

allowed a better globally optimal solution. The better

5-10
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Table 5.6. 6 Hour Interval, Moving Threat

Solution I Solution 2

Impulse Magnitude (m/sec) 15.415 17.383
x-component 13.326 -16.087
y-component -7.749 6.585

Final Relative Position (km)
x-component 497.7 -498.0
y-component -48.3 -44.8

Time of Closest Approach 530.2 -641.6

£ solution is again the one that passes the threat after the

original intercept time.

Minimum Energy Geosynchronous Interception

* _The requirements for avoiding a low-energy geosynchro-

nous interception are also of interest. In this case the

third algorithm (time free, trajectory tangent to sphere)

was used. The situation was modeled by assuming that the

* threat was given a vertical velocity at the Earth's equator

just great enough to carry it to geosynchronous altitude.

The rotation of the Earth gives the attacker a transverse

velocity of about 465 meters per second; this makes the

attack trajectory an elongated ellipse. By equating angu-

lar momentum at the surface of the Earth and at apogee, one

finds that apogee velocity is about 70.361 meters per sec-

ond. Using a threat radius of 300 kilometers, a maneuver

interval of 7000 seconds (1.94 hours), and the threat orbit

described, the optimal avoidance maneuver is one of 39.6764

meters per second. The trajectory passes the threat on the

* outside about 5 seconds after the planned intercept. If
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the maneuver interval is doubled to 14,000 seconds (3.89

hours), the required maneuver is less than half as big,

being only 17.0532 meters per second. However, 14,000

seconds is almost half the attacker's orbital period, so

the shorter interval probably allows a more realistic

period for detection and tracking of the attack.

A Standard Interception

It was the writer's plan to include in the research

a comprehensive survey of the effects of all applicable

variables on maneuver size. Such a survey would be of

practical interest, and it would also demonstrate that the

program worked under a wide variety of conditions. The

survey was to be accomplished by taking a case from a

plausible scenario and varying each parameter independ-

ently. The following describes how the standard intercep-

tion was chosen.

A satellite in a circular geosynchronous equatorial

orbit was chosen as the target of the attack. This de-

"scription fits a large number of military satellites. It

also has the virtue of simplicity. An attack by direct

ascent from the surface of the Earth was chosen as a likely

near-term threat. The attacker might be expected to mini-

mize the energy of his trajectory in order to maximize his

Ii payload, so the threat was given an orbit with apogee at

the intercept point. However, the attacker would probably

not be free to choose the position of his launch site, so

5-12

6
•? :.. -,..•- .-. ,• ... ,,-,-,.......... .. < ,.";.•.-'-.-, ,i'..... . .. •." .'.-.-. .-£ -..- --. '-.-..-.• ,,.--.. .* , ...



Table 5.7. Summary of Geosynchronous Orbit Cases

Maneuver Tan- Vary- Threat Threat Minimum
Interval gency ing Radius Motion Impulse
(hrs) Time (km) (m/sec)

1. 12 No No 500 Fixed 3.343
2. 12 Yes No 500 Fixed 23.204
3. 12 Yes Yes 500 Fixed 9.048
4. 12 Yes Yes 500 Coplanar 7.128
5. 6 Yes Yes 500 Fixed 16.222
6. 6 Yes Yes 500 Coplanar 15.415
7. 1.94 Yes Yes 300 Coplanar 39.676
8. 3.89 Yes Yes 300 Coplanar 17.053
9. 1.94 Yes Yes 300 Inclined 39.648

the coplanar minimum energy interception described above

was not suitable. A launch site in the middle northern

* latitudes would be plausible, so an orbital inclination of

45 degrees was chosen. An apogee velocity of one kilometer

per second was selected as a round number that left perigee

within the Earth. The threat radius was fixed at 300 kilo-

meters. To find a reasonable maneuver interval, the threat

orbit period of 9.2 hours was considered. Allowance was

made for the fact that the attacker would start at a point

past perigee and would have to be detected and tracked, and

an interval of about 2 hours (7000 seconds) was used. Fi-

nally, the third algorithm (time free, trajectory tangent

to sphere) was chosen as the most likely to meet real

mission requirements.

The minimum impulse for the standard interception is

compared in Table 5.7 to all the cases discussed so far.

The first through fourth lines describe the cases in which

the maneuver was made halfway around the orbit; the fifth
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and sixth give the results when the maneuver was made a

quarter of the way around. Lines seven and eight represent

avoidance of the minimum energy attack. The last line in

the table gives the result of the standard interception,

which was 39.6480 meters per second. This value was used

as a basis of comparison as each variable in the intercep-

tion was changed.

Variations on the Standard

Eleven parameters were varied in the standard inter-

w ,.'

ception:

* 1. Radius of the threat sphere

• -• 2. Maneuver interval

.. 3. Attacker speed

4. Attacker orbital inclination

5. Attacker flight path angle

6. Satellite speed

7. Satellite flight path angle

8. Satellite orbital altitude

9. Intercept radial miss distance

_ 10. Intercept in-track miss distance

11. Intercept cross-track miss distance

I- Each of these was varied over as wide a range as practical,

while the other parameters were held as constant as pos-

sible. Maneuver size was plotted as a function of each of

•- Vthem. The plots are shown in Figures 5.5 through 5.16; the

* exact values are tabulated in the Appendix. The graphs are
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not all on the same scale because a scale large enough to

show the big variations would have made the small ones un-

detectable: some of the parameters affected maneuver size

very strongly and others hardly at all. The following

paragraphs describe how each plot was made and remark on

some of their interesting features.

Radius of the Threat Sphere. Required miss distance

was varied from 50 to 1000 kilometers. Figure 5.5 shows

the plot. The variation was very strong and remarkably

1 i near.

Maneuver Interval. The second parameter varied was

the time between the maneuver and the interception. This

was varied from 500 seconds (8 minutes 20 seconds) to

80,000 seconds (22 hours 13 minutes 20 seconds). The

results up to 10,000 seconds are shown in Figure 5.6 and

the remainder in Figure 5.7. Note that the two graphs have

very similar exponential-type shapes even though very dif-

ferent vertical and horizontal scales are used. As ex-

pected, maneuver size decreased as the interval increased

and was very large at short times. It was also at these

short times that the program had the greatest difficulty

converging. There was a small increase in required impulse

for the longest maneuver interval, which was nearly as long

as the orbital period of the satellite.

Attacker Speed. The magnitude of the attacker's velo-

city at intercept time was varied without changing the

other components of its state vector. As the speed went
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from 0.25 to 5.00 kilometers per second, the intercept

point went from being the apogee of a very elongated el-

lipse to the perigee of a very large ellipse and finally

became the perigee of an hyperbola. The results are shown

in Figure 5.8. It is interesting that maneuver size de-

creases smoothly as attack speed increases: a slower

attacker is harder to avoid. Here again the last point

reverses the trend of the rest of the graph. However, the

total variation in this graph is very small, less than one

percent. The encounter geometry is such that the satellite

passes on outside of the threat up through the intercept at

* 3 kilometers per second; after that it passes on the Earth

side.
Attacker Orbital Inclination. The azimuth of the

attack had a very small effect on impulse size, with less

than 4 centimeters per second separating the extremes. The

results are in Figure 5.9. The evasive maneuver was great-

est with an orbital inclination of 160 degrees, in which

the threat was coming head-on in a retrograde orbit.

Attacker Flight Path Angle. A spacecraft's flight

path angle is the angle of its velocity vector above the
9"

local horizon. In the standard interception both vehicles

have a zero angle. Without changing its magnitude, the

or threat velocity vector was moved around in a circle cover-

ing all possible flight path angles; the corresponding

graph is in Figure 5.10. The total variation here is

somewhat greater than in the previous two graphs, being

-51
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about 3.4%. There is a pronounced maximum where the at-

tacker is coming almost directly up and a broad minimum

where he is coming straight down. The minimum occurs

because a small prograde maneuver makes the satellite

arrive later and higher at the intercept point, exactly

right for avoiding a falling threat. The same maneuver

will meet a rising threat.

Satellite Speed. The magnitude of the satellite's

velocity at intercept time was varied from 1.6 to 4.2

kilometers per second. The resulting orbits ranged from an

eccentric ellipse with perigee very close to the atmosphere

to something close to a parabola. Looking at Figure 5.11,

one can see that the variation was nearly linear, although

N it was over a fairly small range (2.6%).

Satellite Flight Path Angle. In the standard inter-

ception the satellite was in a circular orbit with a flight

path angle of zero. Keeping speed and orbital plane un-

changed, this angle was changed through 360 degrees, so

that the intercept point became a point first on the as-

cending part and then on the descending part of ellipses of

varing eccentricity (including rectilinear trajectories),

all ellipses having the same energy. Figure 5.12 shows

that the variation was irregular in shape and over 30% in

magnitude. There is a very strong peak when the satellite

is going straight up (flight path angle of 90 degrees) fol-

lowed by a steep drop to a minimum near 120 degrees. A

second maximum that is broader and lower corresponds to the
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satellite falling nearly directly towards the Earth. This

second peak was an area where convergence of the program

became slow and convergence factors in the tens had to be

used.

Satellite Orbital Altitude. The radius of the satel-

lite's orbit was varied from 12,000 to 80,000 kilometers.

Its orbital velocity was changed to keep the orbit circu-

lar. The attacker's velocity vector was not changed, so

its orbit shape changed from case to case. The results are

in Figure 5.13. With the exception of the first point, the

trend is an ever-slower increase in maneuver size as alti-

* tude increases; the total variation here is over 54%.

Intercept Radial Miss Distance. All of the problems

described so far have started with an interception that is

a direct hit. The next set of runs to be considered varied

the radial position of the threat at intercept time from

4. 250 kilometers on the earthward side of the satellite to

250 kilometers on the far side. Figure 5.14 shows that

maneuver size went down linearly as miss distance in-

creased, and that misses on the inside and on the outside

produced the same effect.

A.• Intercept In-track Miss Distance. The position of the

threat at intercept time was varied 250 kilometers in ei-

ther direction along the satellite's flight path. The re-

sults are plotted in Figure 5.15. The plot does not go to

zero when the miss distance approaches the keep-out range

(300 kilometers) because both the satellite and the at-
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tacker have large components of velocity in the in-track

direction. Even if at the stated intercept time the satel-

lite is near the surface of the threat sphere, the relative

in-track motion of the spacecraft puts the satellite deep

inside the sphere either before or afterwards. This means

that the intercept time given in the problem statement is

not the time of closest approach. If the in-track miss

distance were made still larger, the maneuver would cer-

tainly go to zero.

Intercept Cross-track Miss Distance. The interceptor

has a cross-track velocity component but the satellite does

not. In the graph of variations along this axis (Figure

5.16), the peak is rounded because when the miss distance

is small, the cross-track velocity of the attacker still

causes a close approach before or after the intercept time.

When the cross-track miss is over 100 kilometers, the high

in-track speed of the satellite leaves the attacker behind

"before the latter's cross-track velocity can bring it near.

As the miss distance increases beyond 100 kilometers, the

required evasive maneuver drops linearly towards zero.

Summary. Table 5.6 summarizes the effects of all the

parameters on maneuver size. The lowest and highest

impulses are given for each variation, and the difference

* between them is expressed as a percentige of the lowest.

The last column describes the general trend of each

variation in one or two words.
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TABLE 5.8

Summary of Variations on the Standard Interception

GeneralParameter Low High X Shape of
Varied Impulse Impulse Diff Curve

Sphere 6.612 132.010 1897% Linear
radius

Maneuver 3.932 599.756 15153% Expo-
interval nential

Attacker 39.398 39.674 0.70% Cosine
speed (half)

Attacker 39.646 39.685 0.10% Negative
inclination sinusoid

Attacker flight 39.398 40.723 3.36% Irregular
path angle sinusoid

Satellite 39.095 40.130 2.65% Linear
speed

Sat. flight 36.709 47.801 30% Irregular
path angle

Orbital 27.397 42.323 54% Loga-
altitude rithmic

Radial miss 6.615 39.648 499% Lambda
distance

In-track miss 33.503 39.648 187% Rounded
distance lambda

Cross-track 8.981 39.648 341% Rounded
miss distance lambda
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VI. Conclusions

The goal of the research was to create and validate an

"algorithm that could calculate optimal impulsive orbital

evasive maneuvers. This was accomplished. The algorithm

is imperfect in that in some important situations a conver-

gence factor must be found by trial and error. However,

after a few trials the optimal solution could always be

found. The thesis concludes with a review of the results

of varying the standard interception, some remarks on the

tactics of orbital evasion, and suggestions for further

research.

Factors that Affect Maneuver Size

In the many variations that were made on the standard

interception, some parameters had unexpectedly strong ef-

fects and others unexpectedly weak. It was not surprising

that the lethal radius of the threat and the time of the

maneuver had the strongest influence; these two parameters

basically set the order of magnitude of the maneuver. Im-

t1 pulse size increased linearly as threat radius increased

"and increased apparently exponentially as maneuver interval
-p

4 shrank. Errors in aiming the interception could reduce the

required evasive maneuver to zero, but it was found that

errors in the in-track direction did so much more slowly

than those along the other axes. After these, the next
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most important parameter was orbital altitude. The result

that increasing altitude can increase maneuver size by over

50% was not foreseen. Satellite flight path angle also

could have a fairly strong effect, but it was only impor-

tant when the trajectory was nearly vertical. Orbits like

these are unlikely in real military satellites. Perhaps

the most surprising result was the lack of effect of the

interceptor's velocity: changes in direction or magnitude

altered the evasive maneuver by only a few percent. The

speed of the satellite also had a tactically insignificant

effect. Of course, it is unknown if these results are

* general or if they are peculiar to the case used as a stan-

dard. It is also unknown what will happen when two or more

of the parameters are varied at once.

Tactics

Many practical aspects of the attack avoidance problem

have not been dealt with in this thesis. In a real attack

on a satellite, the threat would have to be detected and

then tracked for a while to determine its orbit. From this

information the defender would deduce the intended target

and the time of interception. The defender would have to

come to some conclusion regarding the lethal radius of the

threat, either from intelligence information or from intel-

ligent guessing. He might decide to defeat the threat by

maneuvering, by attacking the attacker, by attacking the

enemy's control system, by using chaff or decoys, or by
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relying on his satellite's hardening; or he might decide to

do nothing and bear the loss. None of this activity has

been modeled. However, should the defender decide to at-

tempt an evasive maneuver, the algorithm developed in this

--- earch gives him a means of finding the smallest impulse

that will evade the threat.

It was found that the required impulse was generally

smaller for earlier maneuvers, so it might seem advanta-

geous to maneuver as soon as one has an accurate state

vector for the threat. This is the best strategy only if

the attacker cannot be retargeted. If the attacker can, an

0• early maneuver may be detected and the interception re-

established by a countermaneuver. The defender might see

this and perform another evasive maneuver, but this is a

losing game for him: a spacecraft built as an interceptor

is likely to have a much larger maneuver capability than

one built for another primary mission. He is better off

holding his maneuver until there is too little time for the

attacker to react to it, providing that his satellite can

perform the larger maneuver required.

Even if he could not observe and react to an evasive

maneuver, a clever enemy might still defeat it by anticipa-

tion. He could calculate his target's optimal evasion,

assume that it was going to be made, and plan a last-minute

maneuver to nullify it. The attacker could not know the

exact maneuver that would seem optimal to the defender:

his orbital reductions would give him slightly different
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answers and he would not know the exact time of the last-

minute evasion. However, he might be able to come close

enough. Both spacecraft would then maneuver at about the

same time, and the interception would take place before the

defender could react. Being aware of this possibility, the

defender might choose to make a non-optimal evasive maneu-

ver. The attacker might anticipate this, too. Under these

circumstances, the orbital evasion problem becomes the

classical military game of trying to outfox the enemy.

Suggestions for Further Work

There are four basic areas for further work on the

problem of orbital evasive maneuvers. They are as follows:

the performance of the algorithm, the effects of uncer-

tainty, the accuracy of the model, and methods of jointly

optimizing maneuver size and other relevant factors. Some

comments will be made on each of these.

The only important problem with the algorithm's

performance was its slow convergence in certain situations.

A method should be found to make the algorithm converge

reliably in every situation, without having to guess at a

convergence factor. The writer believes that this will

prove to be a tractable problem. One approach that might

work is to use the existing algorithm to locate the circle

on which the optimal solution lies (see Figure 4.2), and

then use a different kind of algorithm (bisection, for

instance) to find the best point on the circle. If this
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problem can be solved, and if computational protection

against numerical singularities is added, the existing

algorithm should be suitable for tactical use, at least as

far as speed and reliability are concerned.

The algorithm in this thesis takes no account of un-

certainties in the data, either in knowledge of the state

vectors or in the precision with which a recommended

maneuver can be made. In a real situation these uncer-

tainties might be large, especially in the knowledge of the

attacker's state vector. One response to this problem

would be to make the required miss distance large enough to

provide protection against all likely variations. However,

it might be possible to handle the problem more precisely.

One might use the attacker's state and its covariance

matrix to find the optimal maneuver that reduces the chance

of a successful interception to some acceptable level.

There is a similar problem when considering the maneuver.

* The program as coded calculates evasive maneuvers to tenths

of a millimeter per second. If a satellite cannot maneuver

this precisely, the uncertainty should be included when the

best evasive maneuver is calculated.

The third area for further work is improving the

mathematical model of the interception. Two intersting

possibilities fall in this area: non-impulsive maneuvers

"* and non-spherical threat volumes. Regarding the former,

one might look at evasion with low-thrust electrical

rockets as well as at the effect on the evasive trajectory
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when supposedly impulsive maneuvers are performed with

small station-keeping thrusters. Regarding the latter, one

obvious improvement would be to model an attacker with

target acquisition device as a conical threat, where the

angle of the cone is the field of view of the sensor. The

general method of Section II could be applied by writing

functions analogous to y and • (Eqs [2.4] and [2.65]) that

measure how close a trial trajectory is to the surface of

the cone, and by dividing the problem into cases for

passing by the side of the cone, by its base, or by its

apex. Of course, this model requires that one have some

* knowledge of where the attacker will be pointing his

sensor.

The last topic that needs to be added to the study of

orbital evasion, and perhaps the most important, is that of

optimizing other things along with impulse size. As men-

tioned in the discussion of evasive tactics, it might be

very important that the attacker not be able to predict

what evasive maneuver will be taken. Now a maneuver the

same size as the optimal but in another direction will

result in a final position inside the threat sphere. As

the maneuver size increases beyond the optimal, the region

outside the threat sphere that the satellite might end up

in also increases. It would be worthwhile to study how

variablity in satellite position increases as the maneuver

46 increases from the smallest that avoids the threat. Another

factor that might cause choice of a non-optimal maneuver is
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satellite attitude: in some cases the attitude change

needed in order to make an optimal maneuver might take too

much time, or it might require so much fuel that it would

nullify the advantage of making the best maneuver. Further-

more, many satellites can carry out their primary mission

only while in one orientation; for them it might be advan-

tageous only to consider maneuvers that require no attitude

change or only a small one. Finally, the cost of returning

the satellite to its mission orbit has to be considered.

The true optimal evasive maneuver is not simply the one

that requires the smallest impulse, but rather one that

takes into account all of these considerations.
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Appendix

Tabulated Results for Variations

on the Standard Interception

Tables A.1 through A.11 contain the data that were used

to create Figures 5.5 through 5.16. Each table corresponds

to one figure, with the exception that Table A.2 was used

for both Figure 5.6 and Figure 5.7.
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TABLE A.1

Minimum Evasive Impulse vs. Threat Sphere Radius

,, Radius Impulse Radius Impulse
(km) (m/sec) (kim) (m/sec)

50 6.6115 550 72.6542
100 13.2215 600 79.2525
150 19.8301 650 85.8499200 26.4373 700 92.4463
250 33.0433 750 99.0419
300 39.6480 800 105.6368
350 46.2515 850 112.2310
400 52.8538 900 118.8245'
450 59.4550 950 125.4175
500 66.0552 1000 132.0098

TABLE A.2

Minimum Evasive Impulse vs. Maneuver Interval

Interval Impulse Interval Impulse
(sec) (m/set) (set) (m/set)

500 599.7558 11000 23.1042
1000 299.4778 12000 20.6912
1500 199.2104 13000 18.6614
2000 148.9490 14000 16.9361
2500 118.6936 15000 15.4569
3000 98.4450 16000 14.1794
3500 83.9184 17000 13.0689
4000 72.9718 18000 12.0983
4500 64.4154 19000 11.2456$ 5000 57.5355 20000 10.4931

* 6000 47.1410 30000 6.2341- 7000 39.6480 40000 4.6606
8000 33.9860 50000 4.0415
9000 29.5592 60000 3.8274

10000 26.0086 70000 3.8142
80000 3.9320
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TABLE A.3

"Minimum Evasive Impulse vs. Attacker Speed

Speed Impulse Speed Impulse
(km/sec) (m/sec) (km/sec) (m/sec)

0.25 39.6743 2.75 39.4789
0.50 39.6689 3.00 39.4602
0.75 39.6603 3.25 39.4438
1.00 39.6480 3.50 39.4259
1.25 39.6313 3.75 39.4132
1.50 39.6101 4.00 39.4050
1.75 39.5850 4.25 39.4003
2.00 39.5573 4.50 39.3983
2.25 39.5292 4.75 39.3982
2.50 39.5022 5.00 39.3996

TABLE A.4

Minimum Evasive Impulse vs. Attacker Orbital Inclination

Inclination Impulse Inclination Impulse
(degrees) (m/set) (degrees) (m/sec)

0 39.6615 180 39.6854
15 39.6588 195 39.6842
30 39.6530 210 39.6805
45 39.6480 225 39.6749
60 39.6464 240 39.6679
75 39.6485 255 39.6605
90 :39.6536 270 39.6536
105 39.6605 285 39.6485
120 39.6679 300 39.6464
135 39.6749 315 39.6480
150 39.6805 330 39.6530
165 39.6842 345 39.6588
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TABLE A.5

"Minimum Evasive Impulse vs. Attacker Flight Path Angle

Angle Impulse Angle Impulse
(degrees) (m/sec) (degrees) (m/sec)

0 39.6480 160 39.6749
15 39.8934 195 39.5566
30 40.1854 210 39.4742
45 40.4545 225 39.4211
60 40.6428 240 39.4000
75 40.7232 255 39.3997
"90 40.6977 270 39.4068
105 40.5867 285 39.4098
120 40.4179 300 39.4038

* 135 40.2199 315 39.3982
150 40.0178 330 39.4209
165 39.8314 345 39.4952

"TABLE A.6

Minimum Evasive Impulse vs. Satellite Speed

Speed Impulse Speed Impulse
(km/sec) (m/sec) (km/sec) (m/sec)

1.6 39.0954 3.0 39.6162
1.8 39.1552 3.2 39.7015
2.0 39.2219 3.4 39.7875
2.2 39.2941 3.6 39.8737
2.4 39.3705 3.8 39.9598
2.6 39.4501 4.0 40.0454

2.8 39.5323 4.2 40.1302
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TABLE A.7

Minimum Evasive Impulse vs. Satellite Flight Path Angle

Angle Impulse Angle Impulse
(degrees) (m/sec) (degrees) (r/see)

0 39.6480 180 39.6749
15 38.6477 195 40.5786
30 38.2409 210 41.3856
45 38.9451 225 42.0946
60 41.6596 240 42.7054
75 47.5959 255 43.2075
90 47.8009 270 43.5705

105 39.4381 285 43.7316
120 36.7093 300 43.5921
135 36.7607 315 43.0675
150 37.6237 330 42.1328
165 38.6734 345 40.9047

TABLE A.8

Minimum Evasive Impulse vs. Satellite Orbit Radius

Radius Impulse Radius Impulse
(km) (m/see) (km) (m/sec)

12000 30.8301 48000 40.5771
16000 27.3967 52000 41.0243
20000 29.5029 56000 41.3657
24000 32.2867 60000 41.6296
28000 34.7389 64000 41.8361
32000 36.6662 68000 41.9996
36000 38.1153 72000 42.1306
40000 39.1889 76000 42.2365
44000 39.9840 80000 42.3231
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TABLE A.9

Minimum Evasive Impulse ys. Intercept Radial Miss Distance

Distance Impulse Distance Impulse
(km) (m/sec) (km) (m/sec)

-250 6.6153 50 33.0913
-200 13.2290 100 26.4735
-150 19.8406 150 19.8542
-100 26.4493 200 13.2351

-50 33.0535 250 6.6169
0 39.6480

TABLE A.10

Minimum Evasive Impulse vs.
Intercept In-track Miss Distance

Distance Impulse Distance Impulse
(km) (m/sec) (km) (m/see)

-250 34.4219 50 39.1766
-200 36.2802 100 38.3084
-150 37.7758 150 37.0563
-100 38.8429 200 35.4364

-50 39.4825 250 33.5032
0 39.6480

TABLE A.11

Minimum Evasive Impulse vs.
Intercept Cross-track Miss Distance

Distance Impulse Distance Impulse
(km) (m/see) (km) (m/see)

-250 9.0489 50 36.9098
-200 16.2059 100 30.3795
-150 23.3490 150 23.2474
-100 30.4588 200 16.1103

-50 36.9196 250 8.9814
0 39.6480
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ABSrACr

A threat to a satellite is modeled as a sphere of a given
radius. The satellite may be required to be outside of the
sphere at a given time or never to enter the sphere at all. The
threat sphere may be inertially fixed or my move in a keplerian
orbit. A method is described of finding the smallest impulsive
maneuver that can be made at a given timeto avoid the threat.
Using the linearized relationship between the satellite state vector
at the maneuver time and the state at the intercept time, iterative
algorithms are developed that converge on the optimal evasive
maneuver. A conputer program that implements the algorithms is
described. The results of the algorithm are given for several
cases. An interception taken from a plausible real-world scenario
is used as a basis for investigating how maneuver size varies with
the geometry of the interception. (,• . (:
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